
Using ES6 Today!
R. Mark Volkmann

Object Computing Inc.
mark@ociweb.com

based on an article at http://sett.ociweb.com/sett/settApr2014.html

Copyright © 2014 by Object Computing, Inc. (OCI).
All rights reserved.

Using ES6 Today

ECMAScript

Defined by European Computer Manufacturers Association (ECMA)

Specification is called ECMAScript or ECMA-262
JavaScript 5.1 (ES5) - http://www.ecma-international.org/publications/standards/Ecma-262.htm

JavaScript 6 (ES6) - http://wiki.ecmascript.org/doku.php?id=harmony:specification_drafts

ECMAScript Technical Committee is called TC39

Meetings
“TC39 has bi-monthly face to face meetings, usually in California (Bay area).
In addition, at least one meeting is held in Redmond, WA (July meeting usually).”

Besides defining the standard,
“TC39 members create and test implementations of the candidate specification
to verify its correctness and the feasibility of creating interoperable implementations.”

Current members include
Brendan Eich (Mozilla, JavaScript inventor), Douglas Crockford (PayPal), Brandon Benvie,
Dave Herman (Mozilla), Luke Hoban, Yehuda Katz (Tilde Inc., Ember.js), Mark Miller (Google),
Alex Russell (Dojo Toolkit), Rick Waldron (Boucoup, jQuery), Allen Wirfs-Brock (Mozilla),
and many more

2

Copyright © 2014 by Object Computing, Inc. (OCI).
All rights reserved.

Using ES6 Today

See Luke Hoban’s (TC39 member) summary
at https://github.com/lukehoban/es6features

3

ES6 Features

Copyright © 2014 by Object Computing, Inc. (OCI).
All rights reserved.

Using ES6 Today

Transpilers

Compilers translate code one language to another
ex. Java to bytecode

Transpilers translate code to the same language

There are transpilers that translate ES6 code to ES5

Examples
Traceur from Google

discussed more later

ES6 Module Transpiler from Square

converts module syntax to AMD, CommonJS, or globals

doesn’t support other ES6 features

http://square.github.io/es6-module-transpiler/

esnext from Square

as of 7/4/14 considered early alpha

supports fewer ES6 features than Traceur

https://github.com/square/esnext

4

Copyright © 2014 by Object Computing, Inc. (OCI).
All rights reserved.

Using ES6 Today

Use ES6 Today?

It may take years for all the features in ES6
to be supported in all major browsers

That's too long to wait and you don't have to wait

Use a transpiler to get comfortable with new features sooner
and allow writing more compact, more expressive code now

For a summary of ES6 feature support in browsers,
and in the Traceur tool discussed next,
see ES6 compatibility table from Juriy Zaytsev (a.k.a. kangax)

http://kangax.github.io/es5-compat-table/es6/

try selecting "Sort by number of features?" checkbox

5

Copyright © 2014 by Object Computing, Inc. (OCI).
All rights reserved.

Using ES6 Today

Google Traceur

Most capable ES6 to ES5 transpiler in terms of feature support

Implemented in ES6 and uses itself to
transpile to ES5 code that runs on Node.js

https://github.com/google/traceur-compiler

Online tool at http://google.github.io/traceur-compiler/demo/repl.html
enter ES6 on left side and see resulting ES5 code on right

useful for testing support for specific ES6 features
and gaining an understanding of what Traceur generates

does not execute code

“Options” menu includes ability to enable experimental features

To install

install Node.js

run npm install -g traceur

6

Copyright © 2014 by Object Computing, Inc. (OCI).
All rights reserved.

Using ES6 Today

Running Traceur

To get help on options
traceur --help

traceur --longhelp

To run code in an ES6 file
traceur es6-file-path

requires file extension to be .js, but it can be omitted in the command

To compile an ES6 file to an ES5 file
traceur --script es6-file-path --out es5-file-path

generated code depends on provided file traceur-runtime.js

can be copied from directory where Traceur is installed

to use generated code in a browser, include a script tag for traceur-runtime.js

Experimental features
to use, add --experimental option

examples of features currently considered experimental include
let keyword, symbols, and async functions

7

doesn’t check for native browser support;
does some feature detecting like not
adding shim methods if already present

Copyright © 2014 by Object Computing, Inc. (OCI).
All rights reserved.

Using ES6 Today

Sourcemaps

Allow browser debuggers to step through code
that was transpiled from another language into JavaScript

for example, debug CoffeeScript code

can debug ES6 code that was transpiled to ES5

Traceur option --sourcemap causes it to generate a sourcemap

places them in same directory as generated ES5 files

browser looks for them there

8

Copyright © 2014 by Object Computing, Inc. (OCI).
All rights reserved.

Using ES6 Today

Using Sourcemaps

In Chrome
open a page that uses transpiled ES6 code

open Developer Tools

click gear icon in upper-right

check "Search in content scripts"

check "Enable JavaScript source maps"

select ES6 .js files from “Sources” tab

set breakpoints

refresh page

In Firefox
enabled by default

to open Firefox debugger,
select Tools ... Web Developer ... Debugger

9

Copyright © 2014 by Object Computing, Inc. (OCI).
All rights reserved.

Using ES6 Today

Linting

It is important to use some linting tool when writing JavaScript

Saves time and reduces errors by catching coding issues before code is run

Can be run from command-line,
integrated into editors/IDEs, and
run automatically when files are saved from any editor using tools like Grunt/Gulp

Most popular JavaScript linting tools
JSLint - http://jslint.org; unclear if or when JSLint will support ES6

JSHint - http://jshint.org; has good support now using "esnext" option

ESLint - http://eslint.org; plans to support ES6, but doesn't yet

I highly recommend using JSHint to check ES6 code

10

Copyright © 2014 by Object Computing, Inc. (OCI).
All rights reserved.

Using ES6 Today

Automation

Grunt - http://gruntjs.com

great tool for automating web development tasks

over 3,100 plugins available

several related to Traceur including "traceur", "traceur-latest",
"traceur-build", "traceur-simple", and "node-traceur"

see example Gruntfile.js in article

uses "watch" plugin to watch for changes to HTML, CSS and JavaScript files

when watch detects these, it automatically runs specified tasks including linting CSS and JavaScript,
running Traceur to generate ES5 code, and refreshing browser to immediately show results of changes

last part is enabled by "livereload" option and including a special script tag in main HTML file

Gulp - http://gulpjs.com

similar to Grunt

also supports watch and livereload

emphasizes use of file streaming for better efficiency

11

Copyright © 2014 by Object Computing, Inc. (OCI).
All rights reserved.

Using ES6 Today

ES6 Features

We will focus primarily on the subset
currently supported by Traceur

12

Copyright © 2014 by Object Computing, Inc. (OCI).
All rights reserved.

Using ES6 Today

Block Scope ...

These require --experimental option in Traceur

const declares constants with block scope

must be initialized

can’t be modified (but Traceur doesn’t currently enforce, issue #18)

let declares variables like var, but they have block scope
not hoisted to beginning of enclosing block, so references before declaration are errors

all uses of var can be replaced with let

when a file defines a module, top-level uses of let are file scoped, unlike var

Traceur implements block scopes in ES5
with a catch block (see in Web REPL)

when a let variable is accessed out of its scope,
Traceur throws a ReferenceError with message “name is not defined”

13

see https://github.com/getify/You-Dont-Know-JS/
blob/master/scope%20&%20closures/apB.md

support for let in Traceur 0.0.25
seems sketchy

Copyright © 2014 by Object Computing, Inc. (OCI).
All rights reserved.

Using ES6 Today

... Block Scope

block functions
functions declared in a block are scoped to that block

14

function outer() {
 console.log('in outer');
}

{
 function inner() {
 console.log('in inner');
 }

 outer(); // works
 inner(); // works
}

outer(); // works
inner(); // throws ReferenceError

Copyright © 2014 by Object Computing, Inc. (OCI).
All rights reserved.

Using ES6 Today

Symbols

Immutable identifiers that are guaranteed to be unique
unlike strings

Can use as object keys
but they become non-enumerable properties

even Object.getOwnPropertyNames(obj) cannot see them!

To create a symbol
let sym = Symbol(description);

description is optional and only useful for debugging

retrieve description with sym.name (not supported in Traceur)

note new keyword is not used

To use a symbol
obj[sym] = value;

15

Copyright © 2014 by Object Computing, Inc. (OCI).
All rights reserved.

Using ES6 Today

Modules ...

A module is defined by a JavaScript file
that exports values and functions
to be shared with other files that import it

The contents of a module are not wrapped
in any special construct

Top-level variables and functions that are not exported
are not visible in other source files

Module code is evaluated in strict mode by default
no need to specify 'use strict';

Syntax is still being debated
concept of defining a default export and importing only it
may be dropped, so not presented here

16

Copyright © 2014 by Object Computing, Inc. (OCI).
All rights reserved.

Using ES6 Today

... Modules ...

To export a value from a module
export var name = value;

To export a function from a module
export function name(params) { ... }

To export multiple, previously defined values and functions in a single line
export {name1, name2, ...}

To import all exports from a module into a single object
module obj from 'module-path';

obj is read-only

JSHint doesn’t recognize this syntax

To import specific exports from a module
import {name1, name2, ...} from 'module-path';

17

module paths do not include
the .js file extension;
can start with ./ or ../

can export any number
of values and functions
from a module

Copyright © 2014 by Object Computing, Inc. (OCI).
All rights reserved.

Using ES6 Today

... Modules ...

To transpile ES6 files that use modules
transpile just main file to generate a single ES5 file that contains all required code

traceur --script main6.js --out main.js --sourcemap

Traceur generated sourcemaps support modules
can step through each of the original ES6 files
that make up a single generated ES5 file

Use in browsers requires traceur-runtime.js

if Traceur was installed using npm install -g traceur,
determine where global modules are installed with npm -g root
and copy traceur-runtime.js from traceur/bin below that directory

add script tag for this in main HTML file

18

Copyright © 2014 by Object Computing, Inc. (OCI).
All rights reserved.

Using ES6 Today

... Modules

19

<html>
 <head>
 <title></title>
 <script src="lib/traceur-runtime.js"></script>
 <script src="gen/main.js"></script>
 </head>
 <body>
 See console output.
 </body>
</html>

index.html

import {foo1, foo2} from './foo6';
console.log('in main');
console.log('foo1 =', foo1);
foo2();

main6.js

import {bar1, bar2} from './bar6';

export var foo1 = 'the value of foo1';
console.log('foo6: bar1 =', bar1);

export function foo2() {
 console.log('in foo2');
 bar2();
}

foo6.js

export var bar1 = 'the value of bar1';

export function bar2() {
 console.log('in bar2');
}

bar6.js

To run from command-line:
 traceur main6
To generate ES5 and sourcemap:
 traceur --script main6.js \
 --out gen/main.js --sourcemap

Output:
foo6: bar1 = the value of bar1
in main
foo1 = the value of foo1
in foo2
in bar2

Copyright © 2014 by Object Computing, Inc. (OCI).
All rights reserved.

Using ES6 Today

Arrow Functions

(params) => { expressions }

can omit parens if only one parameter, but need if no parameters

if only one expression, can omit braces and
its value is returned without using return keyword

cannot insert line feed between parameters and =>

if expression is an object literal, wrap it in parens

this has same value as containing scope, not a new value (called “lexical this”)

so can’t use to define constructors or methods, just plain functions

Examples

20

var arr = [1, 2, 3, 4];
var doubled = arr.map(x => x * 2);
console.log(doubled); // [2, 4, 6, 8]

var product = (a, b) => a * b;
console.log(product(2, 3)); // 6

var average = numbers => {
 var sum = numbers.reduce((a, b) => a + b);
 return sum / numbers.length;
};
console.log(average(arr)); // 2.5

expression can even be another
arrow function that is returned

Copyright © 2014 by Object Computing, Inc. (OCI).
All rights reserved.

Using ES6 Today

Classes ...

Use class keyword

Define constructor
and
instance methods
inside

can only have one
constructor function
per class

21

class Shoe {
 constructor(brand, model, size) {
 this.brand = brand;
 this.model = model;
 this.size = size;
 Shoe.count += 1;
 }
 equals(obj) {
 return obj instanceof Shoe &&
 this.brand === obj.brand &&
 this.model === obj.model &&
 this.size === obj.size;
 }
 toString() {
 return this.brand + ' ' + this.model +
 ' in size ' + this.size;
 }
}

Shoe.count = 0;
Shoe.createdAny = () => Shoe.count > 0;

var s1 = new Shoe('Mizuno', 'Precision 10', 13);
var s2 = new Shoe('Nike', 'Free 5', 12);
var s3 = new Shoe('Mizuno', 'Precision 10', 13);
console.log('created any?', Shoe.createdAny()); // true
console.log('count =', Shoe.count); // 3
console.log('s2 = ' + s2); // Nike Free 5 in size 12
console.log('s1.equals(s2) =', s1.equals(s2)); // false
console.log('s3.equals(s3) =', s3.equals(s3)); // true

not a standard
JS method

class property
class method

Copyright © 2014 by Object Computing, Inc. (OCI).
All rights reserved.

Using ES6 Today

... Classes

Inherit with extends keyword

22

class RunningShoe extends Shoe {
 constructor(brand, model, size, type) {
 super(brand, model, size);
 this.type = type;
 this.miles = 0;
 }
 addMiles(miles) { this.miles += miles; }
 shouldReplace() { return this.miles >= 500; }
}

var rs = new RunningShoe(
 'Nike', 'Free Everyday', 13, 'lightweight trainer');
rs.addMiles(400);
console.log('should replace?', rs.shouldReplace()); // false
rs.addMiles(200);
console.log('should replace?', rs.shouldReplace()); // true

super calls corresponding
method in superclass;
using it inside constructor
is an example of this

Copyright © 2014 by Object Computing, Inc. (OCI).
All rights reserved.

Using ES6 Today

Enhanced Object Literals ...

Literal objects can omit value for a key
if it’s in a variable with the same name

Example

23

var fruit = 'apple', number = 19;
var obj = {fruit, foo: 'bar', number};
console.log(obj);
// {fruit: 'apple', foo: 'bar', number: 19}

JSHint doesn’t
recognize this
syntax yet

Copyright © 2014 by Object Computing, Inc. (OCI).
All rights reserved.

Using ES6 Today

... Enhanced Object Literals

Properties with function values can be specified more easily

Computed properties names can be specified inline

24

var obj = {
 oldStyle: function (params) { ... },
 newStyle(params) { ... }
};

// Old style
var obj = {};
obj[expression] = value;

// New style
var obj = {
 [expression]: value;
};

Copyright © 2014 by Object Computing, Inc. (OCI).
All rights reserved.

Using ES6 Today

Property Method Assignment

Alternative way to attach a function to a literal object

Example

25

var obj = {
 number: 2,
 multiply: function (n) { // old way
 return this.number * n;
 },
 times(n) { // new way
 return this.number * n;
 },
 // This doesn't work because the
 // arrow function "this" value is not obj.
 product: n => this.number * n
};

console.log(obj.multiply(2)); // 4
console.log(obj.times(3)); // 6
console.log(obj.product(4)); // NaN

Copyright © 2014 by Object Computing, Inc. (OCI).
All rights reserved.

Using ES6 Today

New Math Methods

Math.fround(number) - returns nearest single precision floating point number to number

Math.sign(number) - returns sign of number; -1, 0 or 1

Math.trunc(number) - returns integer part of number

Math.cbrt(number) - returns cube root of number

Math.expm1(number) - returns exp(number) - 1;
Math.exp returns e (Euler’s constant) raised to number power

Math.hypot(x, y, ...) - returns square root of sum of squares of arguments

Math.imul(n1, n2) - multiplies two 32-bit integers; for performance

logarithmic functions - Math.log1p(number), Math.log10(number), Math.log2(number)

hyperbolic trig functions - Math.asinh(number), Math.acosh(number), Math.atanh(number)

26

Copyright © 2014 by Object Computing, Inc. (OCI).
All rights reserved.

Using ES6 Today

New Number Methods

Number.isFinite(n) - returns boolean indicating whether n is a Number
and is not NaN, Infinity or -Infinity

Number.isInteger(n) - returns boolean indicating whether n is an integer
and not NaN, Infinity or -Infinity

Number.isNaN(n) - returns boolean indicating whether n is the special NaN value

Number.toInteger(n) - converts a number to an integer

Number.parseInt(string) - parses a string into an integer; same as the global function

Number.parseFloat(string) - parses a string into a double; same as the global function

27

Copyright © 2014 by Object Computing, Inc. (OCI).
All rights reserved.

Using ES6 Today

New String Methods

s1.startsWith(s2) - determines if starts with given characters

s1.endsWith(s2) - determines if ends with given characters

s1.contains(s2) - determines if contains given characters

s.repeat(count) - creates new string by copying s count times

JavaScript uses UTF-16 characters
each occupies two or four bytes

length property of JavaScript strings, as well as charAt and charCodeAt methods
assume two bytes per character

no easy way to get or create 4-byte characters in ES5

string.codePointAt(pos)
gets UTF-16 integer value at a given position

String.fromCodePoint(int1, ..., intN)
returns string created from any number of UTF-16 integer values

28

use of 4-byte UTF-16 characters is
somewhat rare (ex. Egyptian Hieroglyphs),
so this is often not a problem

can specify
starting position
of test for
each of these

Copyright © 2014 by Object Computing, Inc. (OCI).
All rights reserved.

Using ES6 Today

New Array Methods

Array.of(values) - creates an Array from it’s arguments

can use literal array syntax instead

Array.from(arrayLikeObj, mapFn) - creates an Array from an Array-like object

mapFn is an optional function that is called on each element to transform the value

arr.find(predicateFn) - returns first element in arr that satisfies a given predicate function

predicateFn is passed element, index, and arr

if none satisfy, undefined is returned

arr.findIndex(predicateFn) - same as find, but returns index instead of element

if none satisfy, -1 is returned

arr.fill(value, startIndex, endIndex) - fills arr with a given value

startIndex defaults to 0; endIndex defaults to the array length

29

not supported by Traceur yet

Copyright © 2014 by Object Computing, Inc. (OCI).
All rights reserved.

Using ES6 Today

New Object Methods ...

Object.assign(target, src1, ... srcN)

copies properties from src objects to target,
replacing those already present

can use to create a shallow clone an object

useful in constructors

Object.is(value1, value2)

determines if value1 and value2 are the same

values can be primitives or objects; objects are the same only if they are the same object

unlike ===, this treats Number.NaN as the same as Number.NaN

google “MDN JavaScript Object” for more detail

Object.setPrototypeOf(obj, prototype)

changes prototype of an existing object

use is discouraged because it is slow and makes subsequent operations on the object slow

30

class Shoe {
 constructor(brand, model, size) {
 this.brand = brand;
 this.model = model;
 this.size = size;
 // or
 Object.assign(this,
 {brand, model, size});
 }
 ...
}

uses enhanced object literal

Copyright © 2014 by Object Computing, Inc. (OCI).
All rights reserved.

Using ES6 Today

... New Object Methods

Object.values(obj)

returns iterator over values; similar to ES5 Object.keys(obj)

in ES7

Object.entries(obj)

returns iterator over [key, value] pairs

in ES7

31

for (let [k, v] of Object.entries(myObj)) {
 // use k an v
}

Copyright © 2014 by Object Computing, Inc. (OCI).
All rights reserved.

Using ES6 Today

Default Parameters

Parameters with default values must follow those without

Example

Idiom for required parameters (from Allen Wirfs-Brock)

32

var today = new Date();

function makeDate(day, month = today.getMonth(), year = today.getFullYear()) {
 return new Date(year, month, day).toDateString();
}

console.log(makeDate(16, 3, 1961)); // Sun Apr 16 1961
console.log(makeDate(16, 3)); // Wed Apr 16 2014
console.log(makeDate(16)); // Sun Feb 16 2014

run on 2/28/14

function req() { throw new Error('missing argument'); }
function foo(p1 = req(), p2 = req(), p3 = undefined) {
 ...
}

Copyright © 2014 by Object Computing, Inc. (OCI).
All rights reserved.

Using ES6 Today

Rest Parameters

Gather variable number of arguments after named parameters
into an array

If no corresponding arguments are supplied,
value is an empty array, not undefined

33

function report(firstName, lastName, ...colors) {
 var phrase = colors.length === 0 ? 'no colors' :
 colors.length === 1 ? 'the color ' + colors[0]:
 'the colors ' + colors.join(' and ');
 console.log(firstName, lastName, 'likes', phrase + '.');
}

report('Mark', 'Volkmann', 'yellow');
// Mark Volkmann likes the color yellow.
report('Tami', 'Volkmann', 'pink', 'blue');
// Tami Volkmann likes the colors pink and blue.
report('John', 'Doe');
// John Doe likes no colors.

Copyright © 2014 by Object Computing, Inc. (OCI).
All rights reserved.

Using ES6 Today

Spread Operator

Spreads out elements of an array
so they are treated as separate arguments to a function

Examples

34

var arr1 = [1, 2];
var arr2 = [3, 4];
arr1.push(...arr2);
console.log(arr1); // [1, 2, 3, 4]

var dateParts = [1961, 3, 16];
var birthday = new Date(...dateParts);
console.log(birthday.toDateString());
// Sun Apr 16, 1961

alternative to
arr1.push.apply(arr1, arr2);

Copyright © 2014 by Object Computing, Inc. (OCI).
All rights reserved.

Using ES6 Today

Destructuring ...

Assigns values to
multiple variables
and parameters
from values in
objects and arrays

Can be used to
swap variable values

LHS expression
can be nested
to any depth

35

var a = 1, b = 2, c = 3;
var [a, b, c] = [b, c, a];
console.log('a =', a); // 2
console.log('b =', b); // 3
console.log('c =', c); // 1

function report([name, color]) {
 console.log(name + "'s favorite color is", color + '.');
}
var data = ['Mark', 'yellow'];
report(data); // Mark's favorite color is yellow.

var arr = [1, [2, 3], [[4, 5], [6, 7, 8]]];
var [a, [, b], [[c], [,, d]]] = arr;
console.log('a =', a); // 1
console.log('b =', b); // 3
console.log('c =', c); // 4
console.log('d =', d); // 8

var obj = {color: 'blue', weight: 1, size: 32};
var {color, size} = obj;
console.log('color =', color); // blue
console.log('size =', size); // 32

function report2(p1, {weight, color}) {
 console.log(p1, color, weight);
}
report2(19, obj); // 19 blue 1

extracting array
elements
by position

extracting object
property values
by name

Copyright © 2014 by Object Computing, Inc. (OCI).
All rights reserved.

Using ES6 Today

... Destructuring

Great for getting parenthesized groups of a RegExp match

Great for configuration kinds of parameters
or any time named parameters are desired
(common when there are many)

36

function config({color, size, speed, volume}) {
 console.log('color =', color); // yellow
 console.log('size =', size); // 33
 console.log('speed =', speed); // fast
 console.log('volume =', volume); // 11
}

config({
 size: 33,
 volume: 11,
 speed: 'fast',
 color: 'yellow'
});

let dateStr = 'I was born on 4/16/1961 in St. Louis.';
let re = /(\\d{1,2})\\/(\\d{1,2})\\/(\\d{4})/;
let [, month, day, year] = re.exec(dateStr);
console.log('date pieces =', month, day, year);

order is
irrelevant

Copyright © 2014 by Object Computing, Inc. (OCI).
All rights reserved.

Using ES6 Today

Collections ...

New collection classes include
Set

Map

WeakSet

WeakMap

Not supported by Traceur, but can use a shim
one option is es6-shim at https://github.com/paulmillr/es6-shim/ (supports IE9+)

Find a good shim and try it!

37

Copyright © 2014 by Object Computing, Inc. (OCI).
All rights reserved.

Using ES6 Today

Set Class

Values can be any type
To create, var set = new Set()

can pass iterable object to constructor to add all its elements

To add an element, set.add(value);

To delete an element, set.delete(value)

To delete all elements, set.clear()

To test for element, set.has(value)

keys method is an alias to entries method

values method returns iterator over elements

entries method returns iterator over elements

forEach method is like in Array,
but passes value, value and set to callback

38

for API
consistency

these
iterate in
insertion
order

Copyright © 2014 by Object Computing, Inc. (OCI).
All rights reserved.

Using ES6 Today

Map Class

Differs from JavaScript objects in that keys are not restricted to strings
To create, var map = new Map()

can pass iterable object to constructor to add all its pairs (array of [key, value])

To add or modify a pair, map.set(key, value)

To get a value, map.get(key);

To delete a pair, map.delete(key)

To delete all pairs, map.clear()

To test for key, map.has(key)

size property holds number of keys

keys method returns iterator over keys

values method returns iterator over values

entries method returns iterator over array of [key, value] arrays

forEach method is like in Array, but passes value, key and map to callback

39

these
iterate in
insertion
order

Copyright © 2014 by Object Computing, Inc. (OCI).
All rights reserved.

Using ES6 Today

WeakSet Collection

Similar API to Set, but has no size property or iteration methods

Differs in that
values are “weakly held”,
i.e. can be garbage collected if not referenced elsewhere

can’t iterate over values

40

Copyright © 2014 by Object Computing, Inc. (OCI).
All rights reserved.

Using ES6 Today

WeakMap Collection

Similar API to Map, but has no size property or iteration methods

Differs in that
keys and values are “weakly held”,
i.e. can be garbage collected if not referenced elsewhere

can’t iterate over keys or values

41

Copyright © 2014 by Object Computing, Inc. (OCI).
All rights reserved.

Using ES6 Today

Proxies

Can intercept getting and setting properties in an object
to provide extra or alternate functionality

Can intercept calls to a specific function
and provide alternate behavior

Uses new Proxy class

Can intercept these operations
get, set, has, deleteProperty

construct, apply

getOwnPropertyDescriptor, defineProperty

getPrototypeOf, setPrototypeOf

enumerate, ownKeys

isExtensible, preventExtensions

Not supported yet by Traceur

42

Copyright © 2014 by Object Computing, Inc. (OCI).
All rights reserved.

Using ES6 Today

Promises ...

Proxy for a value that may be known in the future
after an asynchronous operation completes

Can register functions to be invoked when a promise is
resolved (with a value) or
rejected (with a reason)

Create with Promise constructor, passing it
a function that takes resolve and reject functions

Register to be notified when promise is resolved or rejected
with then (resolve or reject) or catch (only reject) method

See example on next slide

43

Copyright © 2014 by Object Computing, Inc. (OCI).
All rights reserved.

Using ES6 Today

... Promises

Static methods
Promise.resolve(value) returns promise
that is resolved with given value

Promise.reject(reason) returns promise
that is rejected with given reason

Promise.all(iterable) returns promise
that is resolved when
all promises in iterable are resolved

resolves to array of results
in order of provided promises

if any are rejected, this promise is rejected

Promise.race(iterable) returns promise
that is resolved when
any promise in iterable is resolved
or rejected when
any promise in iterable is rejected

44

function asyncDouble(n) {
 return new Promise((resolve, reject) => {
 if (typeof n === 'number') {
 resolve(n * 2);
 } else {
 reject(n + ' is not a number');
 }
 });
}

asyncDouble(3).then(
 data => console.log('data =', data), // 6
 err => console.error('error:', err));

in real usage, some
asynchronous operation
would happen here

ISSUE:
Errors in resolve and reject callbacks of
then method are silently ignored!
Remember to wrap code with try/catch.
This is not the case in more advanced
promise implementations like Bluebird.

Copyright © 2014 by Object Computing, Inc. (OCI).
All rights reserved.

Using ES6 Today

for-of Loops

New way of iterating over elements in a sequence
where iteration variable is scoped to loop

for arrays, this is an alternative to for-in loop and Array forEach method

Value after of can be an array or iterator
iterators are described next

Example

45

var stooges = ['Moe', 'Larry', 'Curly'];
for (let stooge of stooges) {
 console.log(stooge);
}

Copyright © 2014 by Object Computing, Inc. (OCI).
All rights reserved.

Using ES6 Today

Iterators

Iterators are objects that can visit elements in a sequence
constructor is Object, not a custom class

have a method whose name is the value of Symbol.iterator

this method returns an object with a next method
and an optional throw method

described on next slide

Iterators for objects
TC39 is considering adding class methods
named keys, values, and entries
to some class (maybe Dict or Object)
for obtaining iterators over object properties

46

Copyright © 2014 by Object Computing, Inc. (OCI).
All rights reserved.

Using ES6 Today

Iterator Methods

next method

gets next value in sequence

takes optional argument, but not on first call

specifies value that the yield hit in this call will return at the start of processing for the next call

returns object with value and done properties

done will be true if end of sequence has been reached

when done is true, value is not valid; typically undefined

throw method
optional

takes error argument and throws it
inside generator function that created the iterator

can catch inside generator function

47

generators will be
discussed soon

Copyright © 2014 by Object Computing, Inc. (OCI).
All rights reserved.

Using ES6 Today

Iterator Example #1

48

let fibonacci = {
 [Symbol.iterator]() {
 let prev = 0, curr = 1, result = {done: false};
 return {
 next() {
 [prev, curr] = [curr, prev + curr];
 result.value = curr;
 return result;
 }
 }
 }
}

for (let n of fibonacci) {
 if (n > 100) break;
 console.log(n);
}

1
2
3
5
8
13
21
34
55
89

compare to
slide 37

Copyright © 2014 by Object Computing, Inc. (OCI).
All rights reserved.

Using ES6 Today

Iterator Example #2

49

var arr = [1, 2, 3, 5, 6, 8, 11];
var isOdd = (n) => n % 2 === 1;

// This is less efficient than using an iterator because
// the Array filter method builds a new array and
// iteration cannot begin until that completes.
arr.filter(isOdd).forEach((n) => console.log(n));

// This is more efficient, but requires more code.
function getFilterIterator(arr, filter) {
 var index = 0, iter = {}, result = {done: false};
 iter[Symbol.iterator] = () => {
 return {
 next() {
 while (true) {
 if (index >= arr.length) return {done: true};
 result.value = arr[index++];
 if (filter(result.value)) return result;
 }
 }
 };
 };
 return iter;
}

for (let v of getFilterIterator(arr, isOdd)) {
 console.log(v); // 1 3 5 11
}

Copyright © 2014 by Object Computing, Inc. (OCI).
All rights reserved.

Using ES6 Today

Generators

Functions that have multiple return points
each is specified using yield keyword

Generator functions implicitly return an iterator object
each yield is hit in separate calls to the iterator next method

Can obtain values from a sequence one at a time
lazy evaluation or infinite sequences

Defined with function* name(params) { code }

code uses yield keyword to return each value in sequence,
often inside a loop

ends when generator function exits or
return keyword is used (value returned is not yielded)

50

Copyright © 2014 by Object Computing, Inc. (OCI).
All rights reserved.

Using ES6 Today

Steps to Use Generators

1) Call generator function to obtain an iterator object

2) Call iterator next method to request next value

optionally pass a value that iterator can use to compute the subsequent value

after iterator “yields” next value,
its code is “suspended” until next request

3) Process value

4) Repeat from step 2

51

When an iterator is used in a for-of loop
it performs steps 2 and 4.
Step 3 goes in loop body.

for (let v of someGenerator()) {
 // use v
}

Copyright © 2014 by Object Computing, Inc. (OCI).
All rights reserved.

Using ES6 Today

Generator yield

To return a “normal” value
yield value;

To return the value returned by another generator
yield* otherGenerator(params);

delegates to other generator

52

function* fib() {
 var [prev, curr] = [0, 1];
 while (true) {
 [prev, curr] = [curr, prev + curr];
 yield curr;
 }
}

for (let value of fib()) {
 if (value > 100) break;
 console.log(value);
}

1
2
3
5
8
13
21
34
55
89

compare to
slide 33

Copyright © 2014 by Object Computing, Inc. (OCI).
All rights reserved.

Using ES6 Today

More Generator Examples

53

function* gen2(v) {
 try {
 v = yield 'foo' + v;
 v = yield 'bar' + v;
 yield 'baz' + v;
 } catch (e) {
 console.error('caught', e);
 }
}

var iter = gen2(1);
var result = iter.next(); // can't pass data in first call to next
console.log(result.value); // foo1

result = iter.next(2);
console.log(result.value); // bar2

//iter.throw('stop now');

result = iter.next(3);
console.log(result.value); // baz3

if (!result.done) {
 console.log(iter.next(4)); // not called
}

function* gen1() {
 yield 'foo';
 yield 'bar';
 yield 'baz';
}

for (let value of gen1()) {
 console.log(value);
}

Copyright © 2014 by Object Computing, Inc. (OCI).
All rights reserved.

Using ES6 Today

Generators For Async ...

54

function double(n) {
 return new Promise((resolve) => resolve(n * 2));
}

function triple(n) {
 return new Promise((resolve) => resolve(n * 3));
}

function badOp(n) {
 return new Promise((resolve, reject) => reject('I failed!'));
}

function async(generatorFn) {
 var iter = generatorFn();
 function success(result) {
 var next = iter.next(result);
 // next.value is a promise
 // next.done will be false when iter.next is called after
 // the last yield in workflow (on next slide) has run.
 if (!next.done) next.value.then(success, failure);
 }
 function failure(err) {
 var next = iter.throw(err);
 // next.value is a promise
 // next.done will be false if the error was caught and handled.
 if (!next.done) next.value.then(success, failure);
 }
 success();
}

multiplies a given number
by 2 asynchronously

multiplies a given number
by 3 asynchronously

The magic! This obtains and waits for each of the promises
that are yielded by the specified generator function.
It is a utility method that would only be written once.

BUT DON’T DO THIS!
See async and await
keywords ahead.

compare to
slide 43

called on
next slide

next.value
will be a promise

Copyright © 2014 by Object Computing, Inc. (OCI).
All rights reserved.

Using ES6 Today

... Generators for Async

55

async(function* () { // passing a generator
 var n = 1;
 try {
 n = yield double(n);
 n = yield triple(n);
 //n = yield badOp(n);
 console.log('n =', n); // 6
 } catch (e) {
 // To see this happen, uncomment yield of badOp.
 console.error('error:', e);
 }
});

Call multiple asynchronous functions in series
in a way that makes them appear to be synchronous.
This avoids writing code in the pyramid of doom style.

These yield promises that the
async function waits on to be
resolved or rejected.

This can be simplified with
new language keywords!

Copyright © 2014 by Object Computing, Inc. (OCI).
All rights reserved.

Using ES6 Today

What’s Next?

The next version is always referred to as “JS-next”

Currently that is ES7

Will include
async and await keywords

type annotations

new Object method observe

collections of weak references

value objects - immutable datatypes for representing many kinds of numbers

more

56

Copyright © 2014 by Object Computing, Inc. (OCI).
All rights reserved.

Using ES6 Today

async and await ...

Keywords to be added in ES7
already implemented in Traceur as an experimental feature

JSHint doesn’t recognize these yet

Hide use of generators for managing async operations,
simplifying code

Replace use of yield keyword with await keyword
to wait for a value to be returned asynchronously

await can be called on any function

not required to be marked as async or return a Promise

Mark functions that use await with async keyword

57

Copyright © 2014 by Object Computing, Inc. (OCI).
All rights reserved.

Using ES6 Today

 ... async and await

58

function sleep(ms) {
 return new Promise((resolve) => {
 setTimeout(resolve, ms);
 });
}

async function double(n) {
 await sleep(50);
 return n * 2;
}

function triple(n) {
 return new Promise(resolve => resolve(n * 3));
}

function quadruple(n) {
 return n * 4;
}

function badOp() {
 return new Promise(
 (resolve, reject) => reject('I failed!'));
}

Call multiple asynchronous functions in series
in a way that makes them
appear to be synchronous.
This avoids writing code in
the pyramid of doom style.

async function work() {
 var n = 1;
 try {
 n = await double(n);
 n = await triple(n);
 //n = await badOp(n);
 n = await quadruple(n);
 console.log('n =', n); // 24
 } catch (e) {
 // To see this happen,
 // uncomment await of badOp.
 console.error('error:', e);
 }
}

work();

async function

function that returns a promise

a “normal” function

compare to
slide 39

Copyright © 2014 by Object Computing, Inc. (OCI).
All rights reserved.

Using ES6 Today

Types ...

Optional type annotations for
variables, properties, function parameters, and function return types

current syntax: thing-to-annotate:type-expression

details of syntax are still being determined

if not specified, can hold any kind of value

Will provide run-time type checking

Can specify builtin types and names of custom classes

Types are first-class values
can be stored in variables and passed to functions

Builtin types: boolean, number, string, void, any

Traceur experimental mode supports specifying types,
but doesn’t enforce them yet

59

Copyright © 2014 by Object Computing, Inc. (OCI).
All rights reserved.

Using ES6 Today

... Types

60

function initials(name:string):string {
 return name.split(' ').map(part => part.charAt(0)).join('');
}

function isFullName(name:string):boolean {
 return name.split(' ').length >= 3;
}

var name = 'Richard Mark Volkmann';
//var name = 'Mark Volkmann';
console.log('initials are', initials(name)); // RMV
console.log('full name?', isFullName(name)); // true

// Polyfill for new ES6 method not supported yet by Traceur.
Math.hypot = (x, y) => Math.sqrt(x * x + y * y);

class Point {
 constructor(x:number, y:number) {
 this.x = x;
 this.y = y;
 }

 distanceFrom(point:Point) {
 return Math.hypot(this.x - point.x, this.y - point.y);
 }
}

var p1 = new Point(1, 2);
var p2 = new Point(4, 6);
console.log('distance =', p1.distanceFrom(p2));

Copyright © 2014 by Object Computing, Inc. (OCI).
All rights reserved.

Using ES6 Today

Summary

Which features of ES6 should you start using today?

I recommend choosing those in the intersection of
the set of features supported by Traceur and JSHint

Includes at least these
arrow functions
block scope (const, let, and functions)
classes
default parameters
destructuring
for-of loops
iterators
generators
modules
rest parameters
spread operator
template strings
new methods in String and Object classes

61

